If it's not what You are looking for type in the equation solver your own equation and let us solve it.
x^2-16x=2
We move all terms to the left:
x^2-16x-(2)=0
a = 1; b = -16; c = -2;
Δ = b2-4ac
Δ = -162-4·1·(-2)
Δ = 264
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{264}=\sqrt{4*66}=\sqrt{4}*\sqrt{66}=2\sqrt{66}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-16)-2\sqrt{66}}{2*1}=\frac{16-2\sqrt{66}}{2} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-16)+2\sqrt{66}}{2*1}=\frac{16+2\sqrt{66}}{2} $
| -3x-35=25+2x | | -19=19a | | 14x+18x=11(x+14) | | 3w-4=7(w+4) | | 5x-133=47-4x | | 2x+49=91 | | x2+1.5x-0.632=0 | | -41-x=3x+27 | | 2x+12+8x-1=5x+4 | | s*7-22=125 | | 9(y+6)=5y+46 | | -17-2x+6x=x | | -8u+11=-(u+2) | | 40x+60=30x+80 | | 3(h-4)=1/4(24-6h) | | 2x+46=136 | | 2x+5+3x-65=180 | | 3(h-4)=1/4(24-6h | | -27=x-12 | | 30/100=x/5 | | 3x+4(x+4)=-12 | | 10=-7+n | | -12=2+b | | -4u+2(u-3)=14 | | -9=2x-5=-3 | | 10/1=x | | 37-18+(8x)=67 | | -10.2=k-1.4k= | | -2w+6(w+2)=-8 | | -w+266=8 | | -1=k+(-20) | | 9w-24-6w=18 |